
Virtual platforms, especially those using the Open

Virtual Platforms (OVP), are valuable tools for hardware

and software development. They provide an

environment for running software earlier in the

development cycle, or when using real hardware is not

an option. They also provide more precise control and

visibility into the target hardware, which allows for many

other capabilities, including advanced debugging and

automated testing and verification.

A variety ofskills and knowledge are needed to take full

advantage ofthese virtual platforms and implement

cutting-edge solutions, including the following:

- Embedded software, including compilation tools, debuggers,

and target operating systems

- Virtualized software execution and other simulated/emulated

hardware techniques

- Modeling ofhardware at various abstraction levels

- Electronic design automation, including languages such as

C/C++/SystemC (including TLM2) along with verification

methodologies

VIRTUALIZING HARDWARE
There are many benefits to using virtual instead of real hardware. One

of the big advantages is that software testing and other tasks can be

done earlier in the development cycle, before hardware is available or

even while the design is still being finalized. Even if hardware is

available, a development platform can be made available to more

people, at a lower cost, by using virtualization. Implementing a virtual

platform may require modeling of processors and peripherals, and

combining these into a working platform.

BOOTING THE OPERATING SYSTEM
Once a hardware platform is available, it may be necessary to run an

operating system or other core software on it. This initial booting up of

the system can be a time consuming process, often requiring patching

and recompiling of the kernel. Virtualization eases this process by

providing more visibility into the running system, even when fatal

errors occur. Several mechanisms are available in the OVP models,

such as callbacks and intercepts, to assist with this. Booting an

operating system requires execution of a significant amount of code.

Having fast simulation models can save a significant amount of time

during this process.

RUNNING THE TARGET APPLICATION
At some point in the development cycle, testing must be performed on

the target application. This may be running individual unit tests on

each module, or running the entire system-wide application. Having

increased visibility into, and control of, the platform greatly assists with

this. Assertions or other checks can be added to the platform to

monitor for significant events without modifying the source code. If a

problem is encountered, additional debugging capabilities are available

that could not be done on real hardware, even with JTAG or other

mechanisms.

ANALYZING SOFTWARE EXECUTION
Tests are written to check that the software is giving the correct results.

However, other metrics may be needed to verify the software is correct

and sufficient testing has been done. Coverage, profiling, or other

performance tests are often used. While it is usually difficult to gather

this information without recompiling or making other changes to the

software, using virtual platforms this can be done transparently,

without making any modifications to the target software.

AUTOMATING SOFTWARE TESTING
In the hardware world, a number of tools and languages have been

developed specifically for verification. They provide features such as

automated running of tests, constrained-random generation, and

coverage-driven verification. OVP can be used along with the Cadence

Incisive platform, or specifically with the Virtual System Platform.

This combination of virtualization technology and hardware

verification methodology results in a robust, flexible verification

environment needed to handle the complexity of current and future

software projects.

CO-VERIFYING HARDWARE AND SOFTWARE
Besides testing hardware and software independently, or just in a

system-wide context, hardware and software components can be tested

together to check that they are interacting correctly. This co-

verification is useful in testing corner cases, or other cases that would

be difficult, if not impossible, to test otherwise. OVP models are well

suited to this task as control and visibility into both the hardware and

software is available.

VERIFYING THE SYSTEM
In addition to using hardware verification tools for software

verification, they can also be used for system-level verification. While

these tools have been used for system verification for some time, only a

small amount of the system's software is executed. This is mostly due

to slow processor models, often implemented in Verilog, which require

enormous amounts of computing power, and are generally limited to

running smaller portions of the software. By using OVP, the complete

stack of software can be used without greatly increasing the amount of

time needed to simulate them.

Posedge Software has expertise in the listed areas,

and provides design and consulting services for the

development of virtual platforms and embedded

software using Open Virtual Platforms and the

Imperas M* tools.

http://www.posedgesoft.com

Posedge Software, Inc.

Web: www.posedgesoft.com

Email: info@posedgesoft.com

Phone: (612) 548-4784

OVP Design and Consulting Services

January 3, 2012

© 2012 Posedge Software, Inc. All rights reserved. Cadence, Specman, and
Incisive are registered trademarks of Cadence Design Systems, Inc. in the
United States and other countries and are used with permission. All others are
properties of their respective holders.




